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SUMMARY 

3340% 
A study has been made of minimum-fuel t ransfer  and rendezvous between 

neighboring low-eccentricity orbi ts  by power-limited rocket. This study in- 
cludes and extends previous work wherein only the case of t ransfer  between 
c i rcu lar  orb i t s  was considered. As before, the analysis i s  based on the 
assumption tha t  only small deviations from an i n i t i a l  o rb i t  a re  allowed. 
Complete analyt ical  solutions are  obtained i n  three different  sets of variables: 
(1) rotat ing rectangular coordinates, (2)  rotat ing spherical  coordinates, and 
(3) Lagrange ‘ s  planetary variables. I n  addition t o  the determination of 
optimal t ransfer  and rendezvous t ra jec tor ies  i n  three dimensions, synthesis 
of the optimal controls i s  a l s o  carried out i n  each case. The guidance coeffi-  
c ients  resul t ing from the control synthesis a re  presented both i n  graphical 
form and i n  equation form sui table  for use i n  guidance applications. 

The use of an intermediate reference o rb i t  i s  found t o  be a powerful 
method o f  improving the accuracy of the  l inearized theory. 
c i rcular ,  coplanar earth-Venus and earth-Mars t ransfers  are  compared with 

Results f o r  

.d/ 
exact solutions.  
t ion  with exact data for a l l  t r i p  times of in te res t .  

The l inear  theory i s  shown t o  provide a very 

CONCLUSIONS 

1. Explicit  solutions are  obtainable fo r  minimum-fuel t ransfer  and 
rendezvous between neighboring low-eccentricity orb i t s  by power-limited 
rockets. These solutions include closed form expressions f o r  the optimum 
thrus t  vector, the optimum trajectory, and the minimum required fue l  con- 
sumption i n  terms o f  boundary conditions and t r i p  time. 



2. Synthesis of the optimal control has also been carried out for  both 
t ransfer  and rendezvous between any orbit  and a neighboring, low-eccentricity 
orb i t .  Guidance coefficients for 'each case can be presented i n  terms of time 
remaining t o  reach the ta rge t  orbi t .  

3 .  Results fo r  the case of coplanar circle-to-circle transfer between 
ear th  and Venus indicate that the linearized equations adequately predict  the 
actual  motion, the optimal control, and the minimum fue l  consumption. There 
is, as yet, no numerical data t o  indicate that the rendezvous equations are 
equally applicable t o  the planetary orbits.  The failure of these equations 
appears t o  be caused by the terms representing the angular motion. 

RECOMMENDATIONS 

The resu l t s  of the l inearized analysis f o r  earth-Mars and earth-Venus 
t ransfers  are suff ic ient ly  promising t o  warrant fur ther  investigation in to  
higher-order theories. 
cribed herein is a relat ively straightforward application of the linearized 
equations which should include at  least some second-order effects  on the 
motion. 
second-order solution is  highly desirable. 

In particular,  the "piecewise-linear " theory des - 

It is recommended tha t  this approach be pursued because a simple 

It is character is t ic  of high-specific-impulse, low-thrust propulsion 
systems that the  source of power is separate from the thrust device itself. 
Consequently, such propulsion systems are referred t o  as power-limited, since 
t h r u s t  is res t r ic ted  i n  magnitude by the output of the power supply, which i s  
i n  turn l imited by the necessity of minimizing power supply weight. 

The problem of transfer and rendezvous between neighboring orb i t s  by a 
power-limited rocket is of interest for two basic reasons. First of a l l ,  t he  
problem can be solved analytically, as was demonstrated in  Refs. 1, 2, and 3, 
provided that the thrust acceleration i s  not constrained i n  magnitude and 
tha t  the proper simplifying assumptions are made i n  the mathematical model 
of the system. 
f o r  the optimum t ra jec tor ies  then provide insight in to  m r e  general problems 
where the simplifying res t r ic t ions  are l i f t ed .  
t h i s  problem provides a lower bound to the performance requirements fo r  low- 
thrust o r b i t a l  t ransfer  and rendezvous. 

The analytic expressions thus obtained f o r  the controls and 

Secondly, the solution t o  

It is interest ing t o  note that if ,  for  the same system model as has been 
used herein, the thrust  acceleration is  assumed constant, analytic integration 
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of the equations of motion requires the evaluation of incomplete e l l i p t i c  
integrals  of the th i rd  kind (Ref. 4 ) .  
acceleration i s  essent ia l  i f  simple analytic solutions are  to  be obtained. 

Therefore, allowance fo r  variable-thrust 

ANALYTICAL METHOD 

Description of the Mathematical Model 

The phrase "neighboring orbits",  as defined here, requires t ha t  the 
incl inat ion between orb i t  planes be smaU and tha t  the radial separation 
between orb i t s  be small re la t ive  t o  the semi-major axis of e i ther  orb i t .  
If it is  fur ther  assumed tha t  motion i n  the t ransfer  orb i t  does not deviate 
s ignif icant ly  from these neighboring orbits, l inear izat ion of the equations 
of motion i s  permissible. 

The analysis has been carried out i n  three se t s  of  variables: (1) rotat ing 
rectangular coordinates, (2) rotating spherical coordinates, and (3) Lagrange's 
planetary variables. The rotating coordinates have been u t i l i zed  previously 
i n  R e f s .  5, 6, and 7, while the planetary variables were applied to  an o rb i t  
t ransfer  problem i n  R e f .  4. 

The rotat ing coordinate systems are depicted i n  Figs. 1 and 2. Each 
consists of an origin which revolves a t  satell i te velocity i n  the i n i t i a l  
( i n t e r io r )  c i rcu lar  orb i t  and orthogonal coordinates measured from t h i s  
revolving origin.  
dimension, x' i s  measured tangent t o  the i n i t i a l  o rb i t  a t  the origin, and 
z '  is a coordinate which i s  out of the plane of the i n i t i a l  o rb i t  and is  
normal t o  both x' and y ' . 

In  the rectangular system of Fig. 1, y '  i s  a r ad ia l  

In Fig. 2, the spherical  system i s  composed of a r ad ia l  coordinate y, 
an a rc  x, measured circumferentially from the origin, and another a rc  z, 
which is orthogonal t o  the x-y plane. 

The Lagrange planetary variables, which are  derived from the elements of 
an e l l i p t i c  o rb i t  and are  used i n  the standard variation-of-parmeters 
equations o f  ce l e s t i a l  mechanics ( R e f .  8), a r e  convenient because they elimi- 
nate the necessity of t reat ing s ingular i t ies  fo r  zero eccentr ic i ty  and zero 
incl inat ion i n  these equations. 
variables consist o f  the nondimensionalized semi-major axis x1 = a/%, a 
circumferential distance component, x,, and the following conibinations o f  
the remaining o rb i t a l  elexents: 

A s  they a re  used i n  t h i s  study, the planetary 

x, = e s i n  w 
x3 = e cos w 
x5 = s i n  i s i n  R 
x, = s i n  i cos R 
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where e is eccentricity, w i s  the longitude of peri-apsis, i is o r b i t a l  
inclination, and Q is  the longitude o f  the ascending node. 
variables provide a simple means of introducing eccentricity in to  the termi- 
na l  orbi ts ,  and the form o f  the s t a t e  equations using these variables is  
par t icular ly  simple i n  the present problem. 
cation, they might be less desirable than the rotating coordinates because 
the o rb i t a l  elements cannot be direct ly  measured. 

!The planetary 

However, i n  a pract ical  appli- 

In  v i e w  of the foregoing considerations, eccentric terminal orb i t s  have 
been allowed only i n  the planetary variables i n  this study, w h i l e  the analysis 
i n  rotat ing reference frames is confined t o  c i rcular  terminal orbi ts .  

It should be noted here that  the three sets of variables are en t i re ly  
equivalent i n  t h a t  the equations o f  motion may be transformed direct ly  from 
one set t o  another by substi tution. 
l inearizing assumptions which should be mentioned, however. 

There are some differences i n  the required 

Consider the coordinate system depicted i n  Fig. 1, a rectangular system 

The mutually orthogonal coordinates x ' ,  y ' ,  and 
w i t h  i t s  origin fixed on the in te r ior  o r b i t  (assumed t o  be the reference 
o r b i t )  i n  the x', y '  plane. 
z '  form a triad tha t  revolves with angular speed n, characterist ic of the 
reference orbi t ,  so  that motion i n  th i s  frame of reference is  re la t ive  t o  a 
point on the reference orbi t .  The spherical coordinate system i n  Fig. 2 is  
described by the a rc  x i n  the plane of the reference orbi t ,  the  arc  z measured 
normal t o  this plane, and a rad ia l  dimension y .  

In  order t o  l inear ize  the equations of motion i n  the first system, it is 
necessary t o  assume that excursions x ' ,  y ' ,  and z '  f r o m  the or igin be smal l  
i n  comparison with the radius, ro, of the reference orbi t .  
fore constrained t o  a small  sphere about the origin.  
placed on the component velocit ies.  
the assumption o f  small component velocit ies w i l l  l inear ize  the equations, 
whereas the a rc  x is not limited. The resul tant  m t i o n  is  constrained t o  
a torus about the reference orb i t .  

Motion is there- 
No res t r ic t ions  are 

I n  the rotating spherical system, only 

Since the l inearized equations of motion are ident ical  except for 
differences i n  notation (Ref .  5 ) ,  one can d r a w  the conclusion that, i f  i n  
the spherical system the resultant motion does not involve large variations 
i n  x, the velocity components may be large. In  the present study, use of  
the  spherical system has been assumed throughout, and the results may be 
extended according t o  the foregoing discussion. 

In  the case of the planetary variables, the l inear iz ing assumptions 
require t h a t  the difference i n  the semi-major axes of the terminal o rb i t s  
be smal l  and tha t  the eccentricity of  the terminal o rb i t s  as w e l l  as the 
eccentr ic i ty  of the instantaneous transfer o rb i t  be small. The implications 
of these assumptions are similar t o  those f o r  the rotating spherical system 
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i n  that  "fast" t ra jec tor ies  are allowed only when the l inearizing assumptions 
may be relaxed. 
rectangular system because no limits are placed on the component velocit ies 
i n  the l inearizing process. 

On the other hand, fast t ra jector ies  are  allowed i n  the 

Analysis 

The optimization problem i s  t o  derive the optimal control equation for 
the minimum-fuel t ransfer  o r  rendezvous of a power-limited rocket between 
neighboring o r b i t s  i n  a given t i m e .  Mathematically, th i s  requires minimi- 
zation of the integral  

tf 7 f 71 
J = so (T/m)2 d t  = lo (n0/2) A2 d7 = so fo (A) d7 

subject t o  constraints imposed by the equations of state which may be expressed 
i n  the form 

ii = fi (x, A) i = 1, ... , n ( 3 )  

The control is the thrus t  acceleration vector, A, i n  the present case. 

The problem is t reated as a problem of Lagrange i n  the calculus of varia- 
t ions.  I n  particular,  Breakwell's fonrmlation (Ref. 9 )  of this problem is 
used because the l inearized equations i n  the present case are par t icular ly  
w e l l  sui ted t o  th i s  formulation. 

If a mdamental  function F is defined as 

the variational treatment requires sat isfact ion of Ner-Lagrange equations 
i n  the following form as necessary conditions f o r  the existence of an extremal 
a rc  : 

- -  - 0  
8F 
a*, 
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A n  additional necessary condition provided by the Pontryagin Maximum Principle 
must also be sa t i s f ied  t o  ensure that  the stationary solution predicted by 
the Euler equations is  actually an extremum. The maximum principle, which 
may be expressed as 
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ensures t h a t  the stationary solution is an absolute maximum. Furthermore, it 
has been shown (Ref. 10) t ha t  for  a system where both the s t a t e  variables and 
the controls appear l inear ly  i n  the s ta te  equations, the maximum principle 
is  also suff ic ient  t o  ensure a minimum of the payoff, J. 
the present analyses are  l i nea r  i n  the controls and satisf'y the maximum 
principle,  the optimum t ra jec tor ies  described herein a re  absolute extrema. 

Since all cases i n  

Due to  the great number of equations involved, the var ia t ional  analysis 
i s  not described i n  each case. 
and these a re  grouped i n  an orderly fashion i n  the appendixes. The rotating 
coordinate systems are  considered i n  Appendix I, and the planetary variables 
are  considered i n  Appendix 11. 
of the aforementioned equations the reader is referred t o  Ref. 2 wherein a 
specif ic  case is  t reated i n  detai l .  

Only the most important equations are  included, 

For a more detailed account of the application 

Synthesis of  the Optimal Controls 

In  order t o  put the equations for  the optimized controls i n to  a form 
compatible with guidance requirements, several  chasges are made. First, T 

i n  the control equations is replaced by -7 .  

rewritten with "time-to-go" as the independent variable. Secondly, while i n  
the ordinary transfer and rendezvous analyses i n  rotat ing coordinates it w a s  
generally convenient t o  assume zero i n i t i a l  conditions, the  terminals are  
reversed i n  the control synthesis. 
be defined by zero values i n  most o f  the state variables. The r e su l t s  of 
the control synthesis are expressed i n  terms of the guidance coefficients,  
aA, /axi, of each component of the control vector, A. 

That is, the equations a re  

That is, the ta rge t  o rb i t  is  assumed t o  

The equations fo r  the control synthesis are summarized i n  Appendix I11 
f o r  t ransfer  and rendezvous i n  each of the coordinate systems. Those equa- 
t ions which deal specif ical ly  with t ransfer  between c i rcu lar  orb i t s  have 
been presented previously i n  Ref. 3. 

6 
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RESULTS 

Orbit Transfer and Rendezvous 

The multiplicity o f  S O l U t i O n S  generated i n  t h i s  study (par t icular ly  for  

A n  attempt i s  made t o  summarize the resu l t s  i n  a reasonably con- 
rendezvous) precludes a graphical presentation of a l l  the  resul t ing tra- 
jector ies .  
c i s e  form with o rb i t  t ransfer  solutions represented as special  cases of 
rendezvous wherever feasible.  

To simplify the presentation of the results, only circle- to-circle  
t ransfer  and rendezvous cases a re  examined i n  the summary curves of Mgs. 3 
through 13. The first set of plots,  Figs. 3 through 5, shows the variation 
of the components of the optimal thrust acceleration with t i m e  f o r  circle-to- 
c i r c l e  t ransfer  only. 

The in-plane components Ax/yf and A,/y, a re  seen t o  display symmetry 
about the  midpoint i n  t i m e  f o r  all t r i p  times, as does the out-of-plane com- 
ponent A, /rei. In particular,  when 'r, = 2nn, the components A,/yf and A,/y, 
a re  ccjnstant with time, and the latter i s  zero. 
constant circumferential thrust  acceleration is thereby specified as the 
optimum mode f o r  integral  multiples of the period of the reference orbi t ,  
a result tha t  is i n  agreement with Ref. 7. 

For the coplanar problem, 

m+ -....-- 
--b-bu 5 i i l l - u ~  6 snow tne thrust acceleration comgonents f o r  c i rc le -  

to-circle  rendezvous a t  a par t icular  t r i p  t h e  equdL t o  one sixth of an 
o r b i t a l  period of the reference orb i t .  
xf/yf'rf which takes on the value of 314 f o r  the s p e c i d  case of optimum 
transfer .  Similarly the out-of-plane component is  plot ted w i t h  C+ as a 
parameter. 
values, 150 o r  330 deg, for  optimum transfer.  

The parameter i n  Figs. 6 and 7 is  

A s  indicated, the longitude of the node can have e i the r  of two 

The payoff, J, can be bes t  represented as the sum of three components, 
J,, J2, and J3, which are defined by Eqs. (A-44)and(A-45) and are plot ted i n  
Figs. 9 through 11. The components J1 and J2 define propellant requirements 
f o r  coplanar rendezvous, while the addition of J3 introduces the  out-of-plane 
requirement. In  par t icular  J is equal t o  J, fo r  coplanar t ransfer  since the 
term xi /yf 7, - 3/4 i n  J, is  zero f o r  optimum transfer.  

A l l  three components, as well as the i r  sum, are  seen t o  be monotonically 
decreasing functions of 7,. 
consequence of the fac t  t ha t  no limit has been placed on exhaust velocity. 
Similarly all three components tend to  in f in i ty  as T~ approaches zero because 
zero t r i p  t i m e  requires i n f in i t e  thrust  acceleration. 

In  the limit,as 'r, + a, A and J 4 0. This is a 

An interest ing feature of J3 is evident from Fig. 11. For 'r,=kn,where 
k = 0, 1, 2, . .., J3 is  the same f o r  a l l  nodal longitudes, a,. For a l l  other 
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t i m e s  the envelope of the family of curves is  given by the equations 

(9) 

where the lower envelope i s  given by Eq. (9) and represents J3 fo r  optimum 
transfer .  

Choice of Reference Orbit 

It has been observed tha t  the l inearized equations are applicable only 
f o r  o rb i t s  which a re  not separated by large radial  distances. More specif i -  
cally,  excursions from the origin i n  the y direction should always be small. 
It is apparent, however, t h a t  when the reference o rb i t  is chosen t o  have the 
same radius as the i n i t i a l  o rb i t  the excursion, y, t o  the f i n a l  o rb i t  i s  
maximized. 
o rb i t s  since t h i s  device would guarantee a radial excursion no greater  than 
half  the distance between the terminals. 

A be t t e r  reference o rb i t  would be one midway between the t e d n a l  

Although fo r  the most par t ,  the equations of t h i s  report  are based on a 

These equations 
reference o rb i t  coincident with the i n i t i a l  orbi t ,  Eqs. (A-48) through (A-51) 
and (A-131)  through (A-134) are exceptions i n  t h i s  respect. 
are derived t o  account fo r  an a rb i t ra ry  choice of the reference o rb i t  and may 
therefore be applicable i n  cases where the ordinary equations break down. 

Application to  Planetary Orbits 

S t r i c t l y  speaking, none of the planetary orb i t s  a re  "neighboring orb i t s"  
i n  the sense i n  which t h i s  term has been defined. 
Venus, has a semi-major axis, a = 0.7233AU compared with a = 1.OAU f o r  earth, 
leaving a separation distance of 0.2767AU which is  not << 1.OAU. 
using the improvement referred t o  above, it is  possible t o  apply the l inearized 
analysis t o  earth-Venus and earth-Mars t ra jector ies  with remarkably good 
accuracy. 
from R e f .  ll, f o r  earth-Venus and earth-Mars transfers.  The c i rc led  points 
w e r e  calculated from Eq. (A-48) of Appendix I using a reference o r b i t  midway 
between the two terminal o rb i t s .  
uninclined, c i rcular  terminal orb i t s  show only a s l i g h t  discrepancy i n  J 
f o r  t ransfer  times up t o  one earth year. 

Earth 's  closest  neighbor, 

However, 

I n  Figs. 12 and 13, comparisons have been made with exact solutions 

These resul ts  f o r  the special  case of 
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Drtension of the Linearized Theory 

I 

Based on the successful correlation indicated by Figs. 12 and13,a new 
theory is  being considered i n  order t o  account f o r  second-order effects  i n  J. 
This theory is  a "piecewise-linear" analysis which may be described as follows: 
The t ransfer  (or  rendezvous) i s  divided into two steps, each requiring a 
portion o f  the t o t a l  t r i p  time. The f irst  segment of the t ra jectory consists 
of a rendezvous from the i n i t i a l  orbi t  t o  an intermediate o rb i t  of unspecified 
s i ze  and shape, and the second segment is  a rendezvous from t h i s  intermediate 
o rb i t  t o  the f i n a l  terminal o rb i t .  The expression f o r  J i s  composed of two 
l i nea r  expressions fo r  the two segments, and the parameters of the intermediate 
o rb i t  a re  considered as variables which may be optimized so  as t o  minimize the 
t o t a l  J. In each segment an appropriate reference o rb i t  i s  chosen s o  as t o  
improve the accuracy of the theory. 

This approach should provide bet ter  results than the l inear ized theory. 
Since the resul ts  f o r  earth-Mars and earth-Venus t ransfers  were already good, 
the piecewise-linear theory may approach exact resu l t s  i n  these cases and 
might even yield acceptable resu l t s  for t ra jec tor ies  t o  the outer planets. 

Control Synthesis 

I n  t h i s  study it has been possible t o  express each of the components of 
the optimal control vector, A, as a l inear  func t - inn  n f  t k c  ii Plaie variables. 

n 
A, = C 3 xi 

i=l 3x1 

Therefore,the presentation of the resul ts  can 

(10) 

be confined t o  curves of the 
guidance coefficients,  aAJ/ax ,  plotted against t i m e  t o  go, 7'. 
equations for the guidance coefficients which comprise Appendix 111, the 
summary curves of Figs. 14 through 25 were generated. 

Using the 

The synthesized controls f o r  the case of transfer between an arb i t ra ry  
s t a t e  and a nearby circular  o rb i t  appear i n  Figs. 14 through 16 i n  terms of 
the rotat ing coordinate system variables. 
of the f i n d  o rb i t  i s  provided by use o f  the Lagrange planetary variables i n  
Figs. 17 through 19. 

The extension t o  include eccentr ic i ty  

For rendezvous the same procedure is  followed i n  the presentation of the 
synthesized controls, with the addition of curves t o  account f o r  the dependence 
of in-plane thrust acceleration components on the circumferential distance. 
I n  rotat ing coordinates, Figs. 20 through 22 summarize the results f o r  rendezvous 
between any i n i t i a l  state and a point on a nearby circular  orb i t .  

9 
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As i n  the t ransfer  case, the planetary variables f a c i l i t a t e  the extension 
t o  rendezvous between an i n i t i a l  s t a t e  and a point on a nearby o rb i t  of low 
eccentricity.  
through 25. 

The results for  the planetary variables appear i n  Figs. 23 

All the curves fo r  the guidance coefficients display similar behavior. 
When time-to-go is short, the curves diverge t o  in f in i ty  (either posit ive 
o r  negative), but a damped osci l la t ion i s  evident, causing the coefficients 
t o  approach zero for  very long times. 

10 
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APPENDIX I 

ROTATING IiECTANGuLAR AND SPHERICAL C O O R D I N E  S Y S m  

1. Equations of  State 

dx = =  u 

dY - =  v 
dr 

dz 
dr 

-d!L = A, + 2 y  d r  

dv 
d r  

dw 
dr 

- =  w 

- -  - A, + 3y - 2~ 

A, - z - =  

2. Mer-Lagrange Equations 

i, = 0 

);, =-3X, 

x‘, = A, 

xu = -A,+  2X” 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

( A - W  

(A-12) 

(A-13 1 

(A-14) 

(A-15 



3 .  Integrated Ner-Lagrange Equations 

A,, = noCo 

A, = -6n,(C4 + C o r  -C1 cosr + C2sinr  

A t  = 2 n 0 (  C,sinr + C,  COS^ 1 

A, = n,, (3C,+ 3Gr - 4c, cosr + 4 C 2  s i n r  1 

A, = 2n,,(C0 + C, s i n r  + C, cosr)  

A, = 2 n 0 ( C , c o s r  - C 3 s i n r )  

4. ~ ~ m d a r y  Conditions 

Transfer 

S ta te  Variable f = o  r = rf 

X 0 FREE 

0 Yf 
0 

0 

V 0 0 

Rendezmus 

0 

0 0 

5 .  Integrated Equations of  State (with i n i t i a l  conditions) 

x = [ 16(r - sinr 1 - -$r3]C,, + [ I6(l-cosr - IOr sinr]C, 

+ [ 22 sinr - lorcosr - 12r ] CZ - [ 8 r2 - 12( I - cosr I]  C, 

(A-16) 

(A-17) 

( A-18) 

(A-19) 

(A-20) 

(A-21) 

(A-22) 

y = [8(I -cotr) -3r2]C, ,+  S [ s i n r  - r c o s r ] C , +  [ S r s i n r  - 8 ( I - ~ a s r ) ] C ,  
(A-23 1 + 6 [ t i n r  -r]  C4 

( 1 1  REF 6 
(2) REF 5 

16 



C-910098-12 

z : [ r a s r  - s i n r ] ~ ,  + [ r s i n r ] ~ ,  

u = [ 16(I-cosr) - 7 9 2  r IC,, + [ 6 s i n r  - IOrcorr] C, 

+ [lor sinr - 12( I - cosr I]  C, + [ 12 t i n t  - gr] C, 

(A-24) 

v = [ 8 s h r  - 6 r ] C ,  + [ 5r sinr] C, + r 5r cosr - 3sinr]C2 (A-26) 

+ 3 [ I  - cosr] C, 

w = [- r sinr] CS + [ sinr + r cost c, 1 
6. Transversality Conditions - !t?ransfer 

7. Constants of Integration 

A, = c, = 0 

- Transfer 

yf sin rf 
16(l-cosrf) - rf (5rf + 3sinrf 1 CI = 

2 rf * - sin rf 

(A-27) 

(A-28) 

(A-29) 

(A-30 1 



I 
I 
1 
I 
I 
I 
I 
1 
I 

-$(5q+ 3 s i n q )  c, = 
IS ( l  - cosr,) -rf(5r, + 3 s i n q )  

Rendezvous 

(A-33 1 

1 3s inr f  - 8 ( 1  I-cosrf 

+ co[ 5rf - 3sinrf 
yf sinrf 

I S (  I - torr,) - rf( 5r f  + 3sinrf c, = 

1 -yf ( I - cosrf) 34 I + COST+ - 8sinrf  
c2 = l6( I - cosr, - rf ( 5rf + 3 sin rf 1 

(A-35 1 

(A-36) 

8. Controls 

I 
I 

A, = 3C,+ 3C0r  - 4 C , c o s r  + 4 C 2 s i n r  

18 

(A-38) 

(A-39) 



A, = 2 [ c0 + cI sinr + c2 cosr 3 (A-41) 

(A-42) 

Rendezvous 

3 2  
no ro 8 [  rf (5rf + 3sinrf) - IS( 1 - COST$] 

(A-45 1 

1 rf - sinrf cos ( 24t rf 1 
2 

+ i2 [ (rt - sin rf 

10. 
o rb i t  transfer,  the variational analysis predicts an optimum value for  that 
particular s t a t e  variable a t  the end point. 
the  x and z coordinates are lef t  open a t  f i n a l  time, 'rf .  The end point f o r  
the  optimal t ransfer  is then determined i n  the analysis and is  defined by the 
equations. 

It should be pointed out t ha t  for each free end condition i n  the case of 

In  the rotating coordinate systems 



(A-46) 

(A-47) 

11. Payoff Equations with an Intermediate Reference Orbit 

Let the origin revolve i n  a circular o rb i t  of radius rI between the two 
terminal orb i t s  such tha t  the rad ia l  distance t o  the outer orb i t  is  ri -rI 
and the radial distance t o  the inner orbi t  is  rI-ro . The radii ro and ri 
r e f e r  t o  the inner and outer orbits,  respectively. 

Transfer 

J 
I r - r  2 B(L;;p) ( 5rf + 3 s i n r f  1 . 2  

I - + A 

n13r: - rf ( 5rf + 3 s i n r f  1 - 16( I - cosrf) ff + I s inrf  I 

Rendezvous 

J 
I ‘f - ‘0 * (7) ( 5rf+ 3 s i n r f  

(A-48) 

20 
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I 

12. Optimal Transfer Coordinates 

I 
I 

3 (QL2) 
‘I 4 rf (A-50) 

I +anq 
2 

(A-51) 

21 
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LAGFXNGE'S VARIABLES 

In the theory of special  perturbations, as derived i n  R e f .  8 for  example, 
the equations for  rates of change o f t h e  elements of  an e l l i p t i c  o rb i t  are  
writ ten i n  terms of the elements and acceleration components S, R, and W, 
which are  perpendicular t o  the radius vector, radial and normal t o  the orb i ta l  
plane, respectively. 

Consider the f ive  elements, a, e, i, w, 0. The eqmtions for smal l  rates 
of  change of these variables are 

2 c o s I  + e + ecos'q 

I + e cos9 
- =  de [ Rsinq + dt no (A-53 ) 

(A-54) 

e ton 7 i sin(w+q) 

'1 (A-55) 
S sin1 - dw +KF - =  

d t  noe l + e m q  

- =  d a  sin(w+q) d t  no ein i (A-56) 

I n  order t o  avoid s ingular i t ies  f o r  zero eccentricity and inclination i n  
Eqs. (A-55) and (A-56) these equations may be transformed according t o  the 
following definitions: 

X Z  = e sinw 

22 

(A-57) 



xd = e c o w  

xs = sin i sinQ 

XI = sin i cosQ 

Under the assumptions 

r 

and with the further definit ions 

e < <  I 
a oo 
n W no 

i < <  1 

= not = w + t )  

A, = - 2  S * A, = 2 W 
00 "0  00 n, 

O 
x ,  = - 

00 

x4  = x 

(A-58) 

(A-59) 

(A-60) 

(A-61) 

(A-62) 

the equations of state f o r  the variational problem may be derived from Eqs. 
(A-52) through (A-60). 

There i s  a direct  equivalence between these equations and the equations 
of state i n  the rotating coordinate system variables. 
Lagrange variables xl, q, xg, . .., &, can be expressed i n  terms of the 
rotat ing coordinate variables, x, y, 2, u, v, and w. 

That is, each of the 

Referring t o  Fig. 26, define a position vector 3 i n  nonrotating 
coordinates originating a t  the center of a t t rac t ion  F. 
out of the reference plane is uncoupled from the in-plane motion. 

Assume the motion 

Relative t o  a rotating rectangular coordinate system originating a t  0 
and rotating with angular velocity 2 th i s  vector i s  

23 

(A-63 1 

(A-64) 



+ 
where the uni t  vectors 2 and j are taken i n  the x and y directions, respectively. 
The vector velocity V is  obtained by different ia t ing f .  + 

- 0  - v = -  d f  = U I  7 + v j  + n x r  
d t  

+ + + 
Since n = nok, the expression fo r  V is 

I- - 
v = [ u - n o ( r , + y ) ] T  + ( v +  nox) j (A-67) 

Using Eqs. (A-65) and (A-67), expressions can be written for the angular 
momentum -d, the path speed V and the radius r of the vehicle 

The following equations can be writ ten for the angular mmentum, speed,and 
radius of a body i n  an inverse square f ie ld .  

IF1 = J- 

V =/- = J- 

a( I - e 2 )  
I+e COST 

r =  

24 

(A-68) 

(A-69) 

(A-70) 

(A-71) 

(A-72) 

(A-73 1 
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Combining these equations w i t h  the absolute value of ?, and w i t h  V and r 
from Eqs. (A-68), (A-69), and (A-TO),the following scalar equations result. 

Finally, noting that 

U Y 
Y I + -  
r. 

(I+?;;) = - -  

= xl , x2 = esinw , x3 = e cotw 0 - 
00 

e cos9 = e c o s ( t - u )  = x 2  sint + X,COOT 

(A-74) 

(A-75 ) 

(A-76) 

the equations re la t ing  the coordinates are obtained. 

V - -  - X3 COST - X 2  sinr "or0 
(A-79 1 

The components of the out-of-plane motion can be related i n  the follow$ng 
way. If i s  a u n i t  vector normaJ_ t o  the instantaneous transfer orb i t  and s 
is  a u n i t  vector i n  the direction of the  l i n e  of nodes, then 

-t 

and, since the angle between s and the vehicle is  T - n, 

( A-81) 

25 
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- - ?  cos(r-a) = s . I 
Also, the orbital inclination is 

Using these parameters the equation for the elevation, z, of the probe is 

or 

The out-of-plane velocity, w, is 

W - = x5sinr  + x6 cosr 
n, r0 

1. Equations of State 

dx 
d r  
I- - 2n, 

3 dx4 
d r  2 = - ( x , - i  1 - 2 x 2  sinr - 2x,cosr - 

26 

(A-87) 

(A-88) 

(A-89) 

(A-90) 

(A-91) 

(A-92) 



2. Ner-Lagrange Equations 

3 i, = - - 2 A, 

Xs  = 2A,cosr 

noAS = 2 ( A , + X z s i n r  +A,corr 

noAR = - A 2  COST + A, sinr 

noAW = -A, sinr + A, cosr 

3 .  Integrated Ner-Lagrange Equations 

3 A, = A,o- A, r 

A, = Xs0 +2A4 sinr 

A, = CONSTANT 

A, = II 

xg  = II 

(A-93) 

(A-94) 

(A-95 1 

(A-96) 

(A-97) 

(A-98) 

(A-99) 

(A-100) 

(A-101) 

(A-102) 

(A-103 1 

(A-104) 

( A-105 

4. Boundary Conditions 

A great  simplification i n  the complexity of the equations can be achieved 
by taking advantage of the symmetry afforded by the Lagrange variables x, and 
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G .  
limits --rr / 2  t o  Tr / 2  f o r  the %-plane" s t a t e  variables. 

Therefore, i n  performing the integrations it will  be convenient t o  use 

Transfer Rendezvous 

r = O  r =rf T = O  r = rf 

5t 
0 X 0 X 

(out -of-plane) - 
51 xS 

X 6  0 x6t 0 % 

5 .  Integrated Equat ions of State (with i n i t i a l  conditions) 

r 3 Ax3 = 4X,&sinr + s i n * )  + ?-&(sin2r - s i n 2 k  2 1 

28 

( A-10 8 )  
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- cos ( r  + 4 I]} 
t 6cos$] - 2 3 sin(r +3)- 19 sinr - 8sin -} 4 

+XK){(r+ 3 1 [ 6 s i n g  - St inr  ]+ 2 3 cos(r+%l- 2 19 cosr +8cos?} 

2 2 2 
(A-109) 

+A4 { 16(r+g) - 6 4  I - ms(r + % I ]  + 3(9r + 9 x r ( $ )  r 2  - ~ r ~ }  3 

+ 2 4  cosr - c o s 2  J - 2rJ oint + sin 71 rt rf 

A5 x5 z - ( r  - sinr c o s t )  - sin2r 2 2 

' 6  

(A-110 ) 

( A - l l l )  

6. Transversality Conditions - Transfer 

A, = 0 

AS : tonr 
' 6  

7. Constants of Integration 

Transfer 
A# rf (Sq t 3sinrf)  - 4 A x w  sin- 4 2 
rf (Sr, + 3sinr,) - 16( I - cosr,) 

A, = 

2 [ qAr3f - 2Axn s i n 3 1  

rt ( Srf + 3 s inq 1 - 16 ( I - cosrf 1 
2 x, = 

(A-114) 

(A-115 1 

(A-116) 



Rendezvous 

(A-11-71 

(A-118) 

r f  t - [3ftcos7 - 8sin$] [ 2Axs(sin3 2 + AQf + 4 x m s i n ~  

2 [ r f  Ax3f - 2An,f sin 3 ] 
(A-120) 

(A-121) 



8. Controls 1 
% A s  = 2AI0 - 3X.r + 2 A s i n r  + 2ASocosr 

noAR = 2A4 - A,cosr + A, sinr 

no& = - A, sinr + A,cosr 

( A - 1 2 4 )  

(A-125 1 

(A-126) 

- 

9. Payoff 

i2  

Rendezvous 

2 
rf 2 

( 5rf + 3 slnq) - 4 AxIf Axsf sin 7 + rf Axlf Ax If - 
J 8 - =  

I 
a no3ro2 3 (5rf+ 3 s i n ~ ~ )  - 16( I - COSTf) 

1 rf - sinq COS( 2sZf+rf) 

(rfz- sin * r, I 
1 + i 2  [ 
8 NOTE: (1) The second term of t h i s  equation i s  incorrect i n  R e f .  1. 
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10. 
dicted by the variational analysis i n  the case of o rb i t  transfer Were the 
values x, and R are  l e f t  open a t  the f ina l  time. 

The optimal values f o r  changes i n  the s t a t e  variables q and h2 are pre- 

I rt rt 4  AX^ ( ~ a 6  - ( 5 5  - 3sinr,I+ 3$as- -  - 8sin f?) 
2 2 2 

+ 
5rf - 3sinrf 

3 
2 Q,* = n+ - 

11. Payoff Equations with an Intermediate Reference Orbit 

Transfer 

2 

AX2f 
r f  2 (5Tf  + 3sinrf - 4 Axlf Axsf sin- + rfAx,f AXlf 

+ 8 2 J 

"1 rI 
- =  

3 2  rf ( 5 9  + 3sinrf) - IS( l  - cosrf) 5rf-3sinq 
2 (A-131 1 

i + 
Tf +Isinrf  I 

Rendezvous 

2 
2 rt ( 5rf i- 3sinrf 1 - 4Axlt Ax3f s i n 7  + r,Axsf AXlt 

J 8 
Tf(5rf+3sinrf) - 16(1 - cosq) 32= 

"1 'I 

3 - r f (  xo+ x t f - 2 )  - 4 x , s i n ~  rf rt 
2 2 

I -g- ( 5q- 3sinq) 2 AXH cos - - 2 Axsf sin- - Ax4f + + 
r f ( 5 r t - 3 s i n ~ ) ( ~ r f 2 + I ) -  3 2 ( 3 r t c o s $  - 8 s i n - 1  rt 

2 

1 rf - sinrf cos( 2Gf+ rf ) 
rf - sin rf 2 + i2 [ (A-132 

32 



12. Optimal Transfer Coordinates 

3 Tf r f  Ax4* = zrf( xlo+ Xlf - 2 1 - ZAx,, sin 7 - 4 ~ ~ ~ s i n -  
2 

(A-133 1 
1 r T 7- { ~ c o s g  ( 5 r f - 3 s i n r f )  -I- 3t,cos-;f - a s i n + }  

4 AX2f + 
5 q  - 3sinrf 

33 
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SYXTKESIS OF T€E OPTIMAL COITIBOLS 

A. Rotating Coordinates 

1. Control Equations 

a A Y  a% A y  = - 
dY au av a x  v +- u + -  Y + -  an, an, 

X 
% 84 I a% 

a y  y + ~  dV ax  v +-  u + -  8 4  Ag = - 

r t -  W 
a b  A, = - 
a 2  dW 

2 .  Guidance Coefficients - Transfer 

( A 4 3 5  

(A-137) 

(A-140)  

Ax 12 
8Y 
- = [ 7Or'sinr' - 55r@' + 18r sinricosr@+ 3( I - cost@)( 5 - 2fwsr)]  (A-141)  

6 - = -q- [ 65rn2 - 80r' sinr' - 24r'sinr'cosr@-( I - cosr')( 25- 103 torr')] (A-142)  au 

34 



- 2 sin2ro 
2 - t  

dz re2 -sin re 

where 

3. Rendezvous 

Due t o  the length and complexity of the synthesized, in-plane, control 
equations for  rendezvous, the guidance coefficients are  not writ ten expl ic i t ly  
here. 
from these equations are  plot ted i n  Figs. 20 through 22. 

Instead the basic equations a re  tabulated, and the coefficients calculated 

- a 4  3- - 3-r* dC0 - 4- ac I c o s t @  - 4 - e o  sin r@ (A-147 
a xi ax, ax, ani ax, 

an, 
- =  ax; 2(- ax i  ax - - dCl sinto + - ac2 C O S F )  

I x  911 912 914 I 

I 

O (A-150) 

(A-148) 

(A-149) 

D 
(A-151) 

35 



I 440 441 +44 

D 
(A-152 1 

I where 

I 
R 
I 
I 
B 
i 
1 
I 
I 
I 
I 

and 

0 
(A-153 1 

= 8( I - c0rr')- Sr'sinr' = Sr'cosr' - 3sinr '  



(A-156) 

(A-157) 

B. Lagrange Variables 

1. Control Equations 

2. Guidance Coefficients - Transfer 

4 3  2r'sin r' 
dAu, d5r'f 3sinr') - 16(1 - cosr') 

- =  

4 sinr' 
- t  
aAx2 5r'- 3 sinr' 

37 

( A-160 ) 

(A-161) 

( A-162 ) 

(A-163 1 

(A-164 ) 

(A-165 ) 
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I 
1 

cos r' sin2r' 
dAx, ra2- sin r' 
- -  

2 

I 
2 - - cosr? 2r'- sin2r3 an, - -  - 

a Ax, e2 - sin'? 

(A-166) 

(A-167) 

( A-168) 

3. Guidance Coefficients - Rendezvous 

3 -4 5r ' -  3sinr'+ 2cosr'( 3r'cosS - 8rin I] 
r an, 4 sinr'sin 7 

8 2 - 
(A-169) 

- =  
0 8 

-: c -  C J  

ax, B 

38 

(A-172 

(A-174) 



where 

3 2  3 r* 
16 2 

8 
dA, 4r 's ind - r' + I 1 + rtos - ( 5r* - 3sinr) 

3t*+ 4 s i n r ~ s  7 ) 

- t  

r* c r* dAx2 
( 3r'cos T - 8 sin 7 

c L z + 
0 

- -  dA, 
dAx I 

2 sin?( fa + sin 21-9 
9 - sin2 r e  

- 

0 = 16( I -cosr') - rl 5r' + 3sinr') 

0 = r'( 5r' - 3sinr'N 5 P+ I - 2( 8sin-i. ra - 3 r ' c o s ~  r a  )* 

39 

(A-176) 

(A-178) 

(A-179) 

(A-180) 

( A-1 81 ) 

(A-182) 
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